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Abstract 13 

Bacterial extracellular enzymes play a significant role in the degradation of labile organic 14 

matter and nutrient availability in the open ocean. Although bacterial production and 15 

extracellular enzymes may be affected by ocean acidification, few studies to date have 16 

considered the methodology used to measure enzyme activity and bacterial processes. This 17 

study investigated the potential artefacts in determining the response of bacterial extracellular 18 

glucosidase and aminopeptidase to ocean acidification, and the relative effects of three different 19 

acidification techniques. Tests confirmed that the fluorescence of the artificial fluorophores 20 

was affected by pH, and that addition of MCA fluorescent substrate alters seawater pH. In 21 

experiments testing different acidification methods, bubbling with CO2 gas mixtures resulted 22 

in higher β-glucosidase activity relative to acidification by their introduction via gas-permeable 23 

silicon tubing, or by acid addition (HCl). In addition, bacterial numbers were 15–40 % higher 24 

with bubbling relative to seawater acidified with gas-permeable silicon tubing and HCl. 25 

Bubbling may lead to overestimation of carbohydrate degradation and bacterial abundance, and 26 

consequently incorrect interpretation of the impacts of ocean acidification on organic matter 27 

cycling. 28 
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1 Introduction 29 

Proteins and carbohydrates constitute two of the most common labile organic substrates in the 30 

ocean (Benner, 2002; Benner et al., 1992; McCarthy et al., 1996), both of which are essential 31 

for cellular growth and repair (Azam et al., 1983; Simon and Azam, 1989). Two groups of 32 

extracellular enzymes commonly studied for their role in protein and carbohydrate degradation 33 

are aminopeptidases and glucosidases, respectively. Enzyme activity is sensitive to different 34 

environmental factors, and consequently degradation of proteins and carbohydrates will vary 35 

accordingly. Most enzymes are pH sensitive and have different pH optima (Tipton and Dixon, 36 

1979, Piontek et al., 2013), and consequently a change in ocean pH may result in a decline or 37 

increase in activity of extracellular enzymes as these are directly exposed to the external 38 

seawater pH (Orsi and Tipton, 1979; Tipton and Dixon, 1979). Atmospheric CO2 has increased 39 

by 40 % since the 18th century (IGBP-IOC-SCOR, 2013; IPCC, 2013), which is of concern as 40 

CO2 freely exchanges with the ocean and directly alters ocean carbonate chemistry and pH. As 41 

a result ocean pH has declined from 8.2 to 8.1, with a continued decline to 7.8 predicted by the 42 

year 2100. This decline in ocean pH and the associated change in carbonate chemistry, referred 43 

to as ocean acidification (OA), will significantly impact metabolic reactions and influence 44 

carbon cycling in the ocean (Endo et al., 2013; Engel et al., 2014; Piontek et al., 2010; Riebesell 45 

et al., 2007). For this reason, researchers have investigated the sensitivity of a wide range of 46 

biotic and abiotic factors to future changes in ocean pH and the carbonate system.  47 

Bacterial extracellular enzyme activity has been investigated in OA studies (reviewed in Cunha 48 

et al., 2010) due to the important role they play in the degradation of labile high molecular 49 

weight organic matter (Azam and Ammerman, 1984; Azam and Cho, 1987; Law, 1980; 50 

Münster, 1991) and the vertical flux of carbon to the deep ocean (Piontek et al., 2010; Riebesell 51 

and Tortell, 2011; Segschneider and Bendtsen, 2013). Current research suggests that bacterial 52 

extracellular enzyme activities may increase under future OA conditions (Grossart et al., 2006; 53 

Maas et al., 2013; Piontek et al., 2010, 2013; Yague and Estevez, 1988). This may result from 54 

the direct effect of pH on the ionisation state of the enzyme’s component amino acids (Dixon, 55 

1953), or from indirect influences on longer timescales (Boominadhan et al., 2009). The latter 56 

may be arise in response to changes in the concentration and composition of high molecular 57 

weight organic substrate due to the effect of pH on phytoplankton and bacterioplankton 58 

community composition (Endo et al., 2013; Engel et al., 2008; Riebesell, 2004; Witt et al., 59 
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2011), bacterial secondary production and cell numbers (Endres et al., 2014; Maas et al., 2013), 60 

and phytoplankton-derived organic exudation (Engel, 2002; Engel et al., 2014). 61 

Bacterial extracellular enzyme activity is regularly determined using artificial fluorogenic 62 

substrates. These substrates consist of a fluorescent moiety covalently linked to one or more 63 

natural monomer molecules (Arnosti, 2011; Kim and Hoppe, 1984). The molecule is non-64 

fluorescent until it is hydrolysed by an extracellular enzyme, which triggers a fluorescent 65 

response, allowing it to be detected and quantified (Hoppe, 1993). The sensitivity of the 66 

analytical method to pH has been assessed in terrestrial soils (Malcolm, 1983; Niemi and 67 

Vepsäläinen, 2005), however limited information is available on how these components 68 

respond to a reduction in seawater pH (Piontek et al., 2013). If pH does have a significant effect 69 

on the individual assay components, and this is not corrected, then calculated enzyme kinetics 70 

will under or overestimate the true activity rates. 71 

Several methods are commonly used to artificially adjust seawater pH (Cornwall and Hurd, 72 

2015; reviewed in Riebesell et al., 2010). The simplest acidification method involves the 73 

addition of a strong acid (typically HCl). The acid decreases the sample pH through the 74 

formation of hydronium ions and modifies total alkalinity (TA), but does not alter dissolved 75 

inorganic carbon (DIC) in a closed system (Emerson and Hedges, 2008); consequently 76 

although it is relatively simple to adjust pH using acid, the balance of carbonate species does 77 

not reflect the changes that will occur in response to increased CO2 uptake unless corrected for 78 

by the addition of a base (Iglesias-Rodriguez et al., 2008; Riebesell et al., 2010). Another 79 

method for acidifying seawater is the use of CO2-Air gas mixtures, which alter the seawater 80 

carbonate species in ratios predicted to occur from the uptake of atmospheric CO2 under future 81 

scenarios (Gattuso and Lavigne, 2009; Riebesell et al., 2010; Rost et al., 2008; Schulz et al., 82 

2009). Schulz et al. (2009) suggest that microbial organisms are likely to respond to changes 83 

in carbonate species (e.g. CO2, HCO3
- or CO3

2-), rather than changes in overall DIC or TA. A 84 

review by Hurd et al. (2009) concluded that differences in carbonate chemistry arising from 85 

the use of different acidification methodologies can influence phytoplankton photosynthesis 86 

and growth rates, as well as particulate organic carbon production per cell, and so it is important 87 

to ensure changes in all carbonate system species reflect that projected from an increase in CO2 88 

(Cornwall and Hurd, 2015).  89 
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In addition to the method of acidification, the mode of application also needs to be considered. 90 

A commonly used method of introducing CO2-Air gas mixtures into seawater is by bubbling. 91 

This method is simple to implement and maintain for extended periods, however, the physical 92 

disturbance associated with bubbling CO2 gas may influence coagulation of organic matter 93 

(Engel et al., 2004; Kepkay and Johnson, 1989; Mopper et al., 1995; Passow, 2012; Schuster 94 

and Herndl, 1995; Zhou et al., 1998), as well as microbial interactions (Kepkay and Johnson, 95 

1989). This mechanical disturbance may be particularly exacerbated when bubbling is used in 96 

small-volume incubations at the laboratory/microcosm experimental scale (<20 litres). An 97 

alternative method of introducing CO2 gas is by using gas-permeable tubing (Law et al., 2012; 98 

Hoffmann et al., 2013), which eliminates physical artefacts associated with bubbling whilst 99 

achieving realistic future carbonate chemistry. Previous research has been conducted 100 

comparing the effect of acid addition and CO2 gas bubbling on phytoplankton growth, with no 101 

significant effect detected (Chen and Durbin, 1994; Hoppe et al., 2011; Shi et al., 2009). 102 

However, to date no comparison of the bacterial response to seawater acidified with acid and 103 

CO2 gas aeration has been carried out. In addition, there are no published comparisons of CO2 104 

gas introduced through gas-permeable silicon tubing with bubbling to assess their suitability 105 

for OA research. Consequently the aims of the following study were two-fold; to determine the 106 

effect of pH on the sensitivity of fluorogenic substrates used bacterial enzyme analysis, and 107 

also to compare the response of bacterial processes to different approaches of acidification in 108 

small-volume incubations. 109 

 110 

2 Material and methods 111 

2.1 pH determination 112 

Sample pH was determined using a CX-505 laboratory multifunction meter (Elmetron) 113 

equipped with a platinum temperature integrated pH electrode (IJ44C-HT enhanced series; 114 

accuracy 0.002 pH units), calibrated using Tris buffers (Cornwall and Hurd, 2015) and 115 

regularly cleaned using potassium chloride reference electrolyte gel (RE45-Ionode). Electrode 116 

pH measurements were validated using a pH spectrophotometer with colorimetric 117 

determination using a thymol blue dye solution (Law et al., 2012; McGraw et al., 2010). 118 

Following recommendations in the European Project on Ocean Acidification (Riebesell et al., 119 

2010), pH values in this research reflect the total hydrogen ion scale (pHT). 120 
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 121 

2.2 Extracellular enzyme activity 122 

The activity of two proteases was examined, with arginine aminopeptidase activity (AAP) 123 

quantified using L-arginine-7-amido-4-methylcoumarin hydrochloride (Arg-MCA), and 124 

leucine aminopeptidase activity (LAP) quantified using L-leucine-7-amido-4-methylcoumarin 125 

hydrochloride (Leu-MCA). Two glucosidases were also examined; α-glucosidase activity 126 

(AG) was quantified using 4-Methylumberlliferyl a-D-glucopyranoside (α-MUF), and β-127 

glucosidase activity (BG) was quantified using 4-Methylumberlliferyl β-D-glucopyranoside 128 

(β-MUF, all from P212121 LLC, USA). Artificial fluorogenic substrate was added to each 129 

seawater sample to give a final substrate assay concentration of 39 µM, which was determined 130 

from independent tests to be the optimum concentration for calculating the maximum velocity 131 

of enzyme hydrolysis in seawater samples (data not shown). A four point calibration curve (0, 132 

4, 40, 200 nM final concentration) was created using 4-methylumbeliferone (MUF) for 133 

glucosidase activity, with a separate calibration curve (0, 40, 400, 4000 nM final concentration) 134 

created using 7-amino-4-methylcoumarin (MCA) for protease activity (Sigma-Aldrich). 135 

UltraPure distilled water (InvitrogenTM, Life Technologies) was used as a sample blank. Each 136 

sample was assayed in triplicate using a single 96-microwell flat bottom black assay plate 137 

(Nunc A/S), with a separate enzyme assay performed for glucosidase and protease activity. 138 

Each assay plate was read at 5 min intervals for a minimum of 3 h using a Modulus microplate 139 

reader (Turner Biosystems) at 365 nm excitation and 460 nm emission wavelength as in Burrell 140 

et al., (2015). Incubation assay temperature matched the seawater temperature at the sampling 141 

site. The potential for outgassing and associated increase in sample pH during the 3 h enzyme 142 

assay was not tested. The maximum potential enzyme rate (Vmax, nmol l-1 h-1) was 143 

approximated from the saturating substrate concentration of 39 µM. Triplicate Vmax 144 

approximations were averaged per sample. Cell-specific rates were calculated by dividing the 145 

activity per litre by bacterial cell numbers per litre. The assay tests were carried out using 146 

surface seawater collected from the south coast of Wellington, New Zealand (41°20’53.0”S, 147 

174°45’54.0”E). 148 
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2.3 Enzyme assays 149 

2.3.1 The effect of pH on fluorophore fluorescence 150 

The effect of pH on fluorophore fluorescence was investigated at both typical (Hoppe, 1983) 151 

and elevated fluorophore concentrations using two different buffer solutions, the organic 152 

solvent 2-methoxyethanol (Sigma-Aldrich) and 0.1 M Tris/HCl. The pH of MUF and MCA 153 

fluorophore working standard (200 µM) diluted in 1 % 2-methoxyethanol (Sigma-Aldrich) was 154 

first recorded (pH 6.22 and 6.58 at 18.6 °C respectively). Each fluorophore was then diluted to 155 

4000, 20000 and 40000 nM (referred to as high concentrations) at four pH values (8.2, 8.1, 7.9 156 

and 7.8) in triplicate by addition of 0.1 N aqueous NaOH. The MUF and MCA fluorophore 157 

working standards made up in in 0.1 M Tris/HCl were prepared at pH 8.1 and 7.8 only, and 158 

also carried out at lower concentrations (MUF: 4, 40, 200 nM; MCA: 40, 400, 4000 nM).  159 

2.3.2 The effect of artificial fluorogenic substrate on seawater pH 160 

Individual seawater samples were adjusted to pH 7.95 and 7.70 using 0.1 M HCl. All four 161 

artificial fluorogenic substrates previously described were made up to working standards using 162 

1 % 2-methoxyethanol (Sigma-Aldrich). A time-zero reference pH was recorded for each 163 

seawater sample and, following the addition of each substrate at 39 µM final concentration, 164 

sample pH was recorded immediately and after 30 min. Each artificial fluorogenic substrate 165 

was run in triplicate at both pH values, and compared to controls without substrate addition at 166 

both pH levels. 167 

2.3.3 Buffering artificial substrates 168 

Duplicate trials were undertaken to determine if 0.1 M Tris/HCl could successfully buffer 169 

MCA substrate at the working concentration (39 µM) when added to seawater of similar pH. 170 

Tris buffer contains an amine group which can affect peptidase activity (Baker and Prescort, 171 

1983; Desmarais et al., 2002; Saishin et al., 2010), and so tests were carried out to compare the 172 

impact of different buffers. LAP activity was compared in seawater using LAP substrate (39 173 

µM final concentration) buffered with 0.1 M Tris/HCl or 3-(N-morpholino)propanesulfonic 174 

acid (MOPS) with pH adjusted to 8.1. Enzyme activity was also determined in seawater (pH 175 

8.18). A non-buffered LAP substrate addition was not included due to the acidic nature of the 176 

aminopeptidase substrate (non-buffered LAP substrate was pH 5.87). MOPS has been used as 177 

a buffer in studies of the effects of pH on enzymes (Piontek et al. 2010), and so was an 178 
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appropriate comparison. Borate buffers were not trialled because they have a bactericidal effect 179 

on microbial activity (Houlsby et al., 1986). In two separate test experiments using coastal 180 

seawater Tris/HCl buffer did not inhibit LAP activity relative to MOPS but instead showed a 181 

minor stimulatory effect with 16-18% higher LAP activity (data not shown). Tris/HCl was 182 

selected for subsequent use as its optimal buffer range is pH 7.8-9.0, making it ideal for OA 183 

incubations, and it has a pKa of 8.06, so is appropriate for artificial fluorescent substrates 184 

(Hoppe, 1993). 185 

Following the above tests, the following methodology was used for the seawater acidification 186 

tests. Tris buffered Leu-MCA and Arg-MCA substrate working standards were made by 187 

diluting 500 µl of MCA substrate stock (16 mM) with 4.5 ml of 0.1 M Tris/HCl buffer. 188 

Duplicate Tris/MCA substrate solutions were adjusted to pH 8.1 and 7.8 by adding 10 % HCl 189 

and the pH of duplicate 10 ml aliquots of coastal seawater was also adjusted to pH 8.1 and 7.8. 190 

For each pH treatment, 250 µl of Tris/MCA substrate solution was added to 10 ml of seawater 191 

fixed at the corresponding pH. pH was recorded at room temperature using a pH electrode as 192 

described above. 193 

 194 

2.4 Seawater acidification approach 195 

The influence of acidification technique on biotic parameters was investigated in two separate 196 

experiments conducted under controlled temperature conditions in late summer (May 2013 - 197 

trial 1) and in early spring (October 2013 - trial 2). Coastal seawater was first filtered through 198 

a 15 µm filter and then a 1 µm inline cartridge filter. Three different methods were used to 199 

acidify seawater to that predicted by the end of the century (pH 7.80) (IPCC, 2013): (A) acid 200 

addition using 0.1 M HCl; (B) bubbling CO2-Air gas mixture through an acid-washed aquarium 201 

airstone, and (P) CO2-Air gas mixture introduced through gas-permeable silicon tubing (Tygon 202 

Tubing R-3603; ID 1.6 mm; OD 3.2 mm; Law et al, 2012). Treatment P was acidified to a pH 203 

of 7.8 by the sequential application of 100 % synthetically produced CO2 gas for 25 min, 204 

followed by 10 % CO2 gas (in 20.8 % O2 in N2, BOC Gas Ltd) for 60 min at a flow rate of < 205 

26 ml min-1. The initial use of pure and 10 % CO2 gas made it possible to reach the target pH 206 

within 3 h. Treatment B was acidified by bubbling seawater with 742 µatm CO2 gas (in 20.95 207 

% O2 in N2, BOC Gas Ltd) for 143 min at < 25 ml min-1 to achieve the target pH 7.80. The 208 

volume of 0.1 M HCl required to acidify treatment A to pH 7.8 (2.0 ml - trial 1, 3.1 ml - trial 209 
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2) was calculated based on the sample volume, DIC and alkalinity (pers. comm. Dr K. Currie, 210 

NIWA/University of Otago) using an algorithm from Dickson et al. (2007). To ensure a 211 

consistent rate of pH change across treatments, treatment B and A were adjusted to match that 212 

of the slower treatment P (150 min), with the pH of each sample verified using a pH electrode. 213 

Each treatment and an ambient seawater Control were then incubated in triplicate in acid-214 

washed milli-Q water-rinsed 4.3 Litre low-density polyethylene (LDPE) cubitainers 215 

(ThermoFisher Scientific), without a headspace. No further pH adjustment took place during 216 

the 96 h incubation. 217 

Each cubitainer was housed in one of two identical perspex incubation chambers (1730 mm 218 

long, 450 mm high by 325 mm deep), set at in situ ambient seawater temperature (15.1 °C - 219 

trial 1, 15.5 °C - trial 2). Artificial light (700 - 900 µE m-2 s-1) was maintained in each cubitainer 220 

through external fluorescent light banks (Philips TLD 36 W/840); neutral density 221 

polycarbonate screening ensured light intensities were uniform between incubation chambers, 222 

while adjustable timers ensured an automated diurnal 12 h light/dark cycle. Mixing of water in 223 

each cubitainer was achieved using an inflating diaphragm positioned underneath each 224 

cubitainer, with the inflation and collapse of the diaphragm under the weight of the sample 225 

resulting in continual water mixing. Cubitainers were also manually removed and inverted 226 

three times prior to each sampling. Time-zero sampling occurred after initial pH adjustment. 227 

Assay fluorophore and substrate standard solutions were adjusted to treatment pH. 228 

2.4.1 Bacteria and picoplankton cell numbers 229 

Triplicate samples were collected in 2 ml Cryovials (Raylab Ltd) and frozen in liquid nitrogen 230 

(Hall et al., 2004) for up to 12 weeks prior to analysis. Bacterial cell numbers were determined 231 

by flow cytometry (FACSCalibur, Becton-Dickinson) following staining with SybrGreenII 232 

(Invitrogen) (Lebaron et al., 1998), and count events were normalised to volume using 233 

TruCount bead solution (BD Biosciences) (Button and Robertson, 1993). Total eukaryotic 234 

picoplankton numbers (< 2 µm) were determined by fluorescence of chlorophyll (wavelength 235 

670 nm), phycoerythrin (585 nm), and phycourobilin (530 nm) as well as forward light-scatter 236 

providing an estimate of cell size. Final count values were recorded as cells ml-1. 237 

2.4.2 Bacterial secondary production 238 

Potential bacterial secondary production (BSP) was measured using 3H-leucine (3H-Leu) of 239 

high specific activity (> 80 Ci mmol-1, SciMed Ltd) in triplicate 1.7 ml samples. Following the 240 
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TCA precipitation and centrifugation methodology (Kirchman, 2001; Smith and Azam, 1992), 241 

3H-Leu incorporation was determined using a liquid scintillation counter (Tri-Carb 2910 TR) 242 

and converted to secondary production using a protein conversion factor (1.5 kg C mol-1 243 

leucine) (Simon and Azam, 1989). Cell-specific rates were calculated by dividing the BSP rate 244 

by total bacterial cell numbers. 245 

2.4.3 Dissolved Inorganic Carbon and Total Alkalinity 246 

Pre-combusted 12 ml sample DIC vials (Labco Ltd) were triple rinsed with sample seawater 247 

and filled, ensuring no air bubbles. One drop of saturated HgCl2 was added to each DIC sample, 248 

with storage at room temperature. DIC was determined using evolved CO2 gas after sample 249 

acidification on a Marianda AIRICA system, the accuracy of this method was estimated to be 250 

±5 µmol kg-1, as determined by analysis of Certified Reference Material. Alkalinity samples 251 

were collected by filling a 1 liter screw top bottle, and following the same sample preparation 252 

and storage procedures as DIC above. Samples were later analysed by potentiometric titration 253 

in a closed cell (Dickson et al., 2007) with an accuracy of ±2 µmol kg-1, also determined by 254 

analysis of Certified Reference Material. 255 

2.5 Statistical analysis 256 

Statistica v.10 (StatSoft Inc., USA) was used for basic graphics and descriptive statistics. Data 257 

was tested for normality and equality of variance prior to statistical analysis. Data was log(x+1) 258 

transformed due to the small sample size at each sampling point. Standard hypothesis 259 

formulations were used for each Analysis of Variance (ANOVA), the null hypothesis (Ho) was 260 

µ = 0. The significance level of each test was p ≤ 0.05. If Ho was rejected, a Tukey’s HSD post-261 

hoc analysis test was run to identify individual variable responses. 262 

 263 

3 Results and discussion 264 

3.1 Enzyme assay methodology   265 

MUF and MCA fluorescence was lower at pH 7.8 relative to pH 8.1, as previously reported in 266 

soils (Niemi and Vepsäläinen, 2005). The fluorescence of the unbuffered MUF 2-267 

methoxyethanol at 40000 nM was 20 % higher at pH 8.1 than at pH 7.8 (t-test, p < 0.05), while 268 

MUF Tris buffered fluorescence at 200 nM was 15 % higher at pH 8.1 (t-test, p < 0.05; Table 269 

1). MCA 2-methoxyethanol fluorescence at 40000 nM was 4 % higher at pH 8.1 than 270 
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fluorescence at pH 7.8 (t-test, p < 0.05), while MCA Tris buffered fluorescence at 200 nM was 271 

9 % higher at pH 8.1 than at pH 7.8 (t-test, p < 0.05; Table 1). These results confirm that pH 272 

has a significant effect on MUF and MCA fluorescence at both high and typical working 273 

concentrations, and so fluorophore calibrations should be carried out at the same pH as the 274 

sample. 275 

Although there is awareness of the effect of pH on fluorophore fluorescence (Piontek et al., 276 

2013; Endres et al., 2014), few studies consider the effect of fluorescent substrate addition on 277 

seawater pH. Due to the basicity of the MCA amino group, fluorescence intensity is less 278 

affected by pH and it has been suggested that buffering is not required (Piontek et al., 2013; 279 

Endres et al., 2014), whereas buffering of MUF has been reported (Piontek et al., 2010; 2013, 280 

Endres et al., 2013). Immediately following the addition of non-buffered Leu-MCA or Arg-281 

MCA substrate to seawater at pH 7.95 or 7.70, pH decreased by at least 0.05 units for each 282 

substrate, and remained significantly lower 30 mins after addition when compared to time-zero 283 

pH (one-way ANOVA, p < 0.05). As both MCA substrates are hydrochloride salts, addition 284 

resulted in a significant pH change, as previously reported by Hoppe (1993). In tests of Tris 285 

buffered MCA substrate solutions adjusted to seawater pH 7.8 and 8.1, pH change ranged from 286 

0.003 to 0.03 units (±0.001 SE). As the addition of buffer solution reduced the pH change, both 287 

MCA substrates and fluorophores were subsequently produced using 0.1 M Tris/HCl, with pH 288 

adjusted to the respective experimental treatments and Control. In contrast to MCA, no 289 

statistically significant change in pH was recorded immediately following, or 30 mins after, 290 

addition of either α-MUF or β-MUF substrate to seawater at pH 7.95 or 7.70, indicating that 291 

these are neutral compounds. However, to eliminate possible bias, MUF substrates were also 292 

buffered using Tris/HCl. 293 

 294 

3.2 Seawater acidification  295 

Having established that the analytical procedures for determining extracellular enzyme activity 296 

are affected by, and alter pH, the influence of acidification technique was then considered in 297 

two separate trials in different seasons. Overall, the experiments showed that different 298 

acidification techniques had significant effects on BG and LAP activity in both trials (Fig. 1), 299 

while the response of AG and AAP activity was variable with no consistent treatment response 300 

relative to the Control (data not shown). Overall, BG and AG activity declined from time-zero 301 
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to 96 hrs in the Control and treatments in trial 1, but were both significantly higher in the 302 

treatments relative to the Control from time-zero to 72 h, with BG activity approximately three-303 

fold higher than AG activity (data not shown). Cell-specific BG activity was at least an order 304 

of magnitude higher in treatment B, P and A relative to the Control at time-zero (one-way 305 

ANOVA, p < 0.05) (Fig. 2), which is consistent with a direct effect of acidification (Piontek et 306 

al., 2013). Cell-specific BG activity was highest in treatment B from 24 h to 72 h by at least 14 307 

% relative to treatment A and P (Fig. 1). In contrast to trial 1, cell-specific BG activity increased 308 

significantly throughout trial 2 (repeated measures ANOVA, p < 0.05). The opposing temporal 309 

trends between trials may signify seasonal differences in the response of glucosidase to OA, 310 

potentially reflecting differences in microbial community composition (Endo et al., 2013) or 311 

substrate availability (Morris and Foster, 1971). There was no significant difference in BG 312 

activity between treatments at time-zero in trial 2 (one-way ANOVA, p > 0.05) (Fig. 2), and 313 

BG activity was again highest in treatment B from 48 h, with activity at least 18 % higher 314 

relative to treatment P and A (Fig. 1). Bulk water LAP and AAP activity varied between 315 

treatments for trials 1 and 2. For example, both LAP and AAP activity were highest in treatment 316 

P throughout trial 1, whereas LAP activity was highest in treatment B from 72 h to 96 h in trial 317 

2 (data not shown). Although cell-specific LAP activity showed evidence of a response to 318 

acidification, this was not significant in either trial (Fig. 1). 319 

Although treatment B was only bubbled with gas mixtures for the pre-incubation period (143 320 

mins), this had a greater effect on BG activity than in the other treatments, indicating potential 321 

artefacts associated with bubbling. Bubbling may have ruptured picoplankton cells or increased 322 

their susceptibility to viral lysis, leading to an increase in the release of labile organic 323 

carbohydrates. This is potentially supported by the decline in total eukaryotic picoplankton cell 324 

numbers in treatment B (trial 1 – 2.8 x 103 to 2.6 x 103 cells ml-1, trial 2 – 1.7 x 103 to 1.3 x 103 325 

cells ml-1) in both trials (repeated measures ANOVA, p < 0.01). An increase in enzyme activity 326 

would theoretically increase the availability of low molecular weight organic substrate for 327 

bacterial assimilation, and may explain the significant increase in bacterial cell numbers in 328 

treatment B relative to the Control at 96 h in both trials (one-way ANOVA, p < 0.05) (Fig. 2). 329 

An increase in bacterial abundance in response to bubbling has been previously reported by 330 

(Kepkay and Johnson, 1989) who suggested that surface DOC coagulation facilitated by 331 

bubbling resulted in increased respiration and bacterial numbers. It is possible that bubbling 332 

increased the abiotic coagulation of organic matter (Riley, 1963) and formation of high 333 
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molecular weight substrate such as transparent exopolymer particles (Mopper et al., 1995; 334 

Passow, 2012; Schuster and Herndl, 1995; Zhou et al., 1998), which could explain the elevated 335 

cell-specific BG activity (Fig. 1). 336 

All acidification treatments had a significant negative effect on cell-specific BSP from 24 h to 337 

48 h in trial 1 (one-way ANOVA, p < 0.05) (Fig. 3). During trial 2, cell-specific BSP was 338 

significantly lower in treatments B and P when compared to the Control from 72 h to 96 h (one-339 

way ANOVA, p < 0.05), while BSP was twice as high in treatment A during this period (Fig. 340 

3). Although a clear treatment response was not observed in either trial, the low cell-specific 341 

BSP in treatment B relative to the Control and treatment A at 96 h in trial 2 was surprising as 342 

enzyme activity and bacterial cell numbers were elevated. Existing literature also reports 343 

variable BSP responses to acidified conditions. Arnosti et al., (2011) and Teira et al., (2012) 344 

detected no significant BSP response, while Grossart et al., (2006) detected an increase, and 345 

Maas et al., (2013) and Siu et al., (2014) recorded a decrease in BSP rates with increasing CO2. 346 

As the same response was not observed in trial 1, it is possible that additional indirect factors 347 

such as bacterial community composition or substrate type may have influenced BSP under 348 

OA conditions (Piontek et al., 2013). 349 

 350 

4 Conclusions 351 

Artificial fluorogenic substrates have been used to investigate bacterial extracellular enzyme 352 

activities in aquatic environments for decades (Hoppe, 1983; Somville and Billen, 1983). 353 

Although the technique has several limitations, including that the artificial fluorogenic 354 

substrate may not represent the naturally occurring substrate (Chróst, 1989), and so the 355 

observed activity only represents potential hydrolysis (Arnosti, 1996; Unanue et al., 1999), the 356 

technique is rapid and easily applied in the field and most importantly, allows for a standardised 357 

method for comparison of results in different OA studies. This study confirmed that artificial 358 

fluorogenic substrates used to determine extracellular enzyme activity are affected by, or alter, 359 

pH, and so buffering is required particularly when used in OA research. Seawater acidification 360 

stimulated β-glucosidase activity, but different methodological approaches can influence the 361 

magnitude of this response. Simple acid addition does not produce realistic seawater carbonate 362 

chemistry predicted in a future ocean (Riebesell et al., 2010), and bubbling with CO2 gas has a 363 

significant effect on β-glucosidase activity and bacterial cell numbers, indicating that there are 364 
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artefacts associated with bubbling. It should be noted that these effects were observed in small-365 

volume laboratory-scale experiments, and may have less impact in larger-scale experiments. 366 

Nevertheless, the results indicate that the most robust technique to investigate the response of 367 

bacterial processes to future OA conditions is CO2-Air gas mixtures introduced using gas 368 

permeable-silicon tubing. This approach should be considered for broader use in standardised 369 

protocols for ocean acidification (Riebesell et al., 2010; Cornwall and Hurd, 2015) to achieve 370 

robust meta-analyses and international inter-comparisons. 371 
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Figure Legends 610 

Table 1. Mean fluorophore fluorescence at pH 8.1 ad 7.8 (RFU, n=3, ±SE). 611 

 Concentration (nM) Fluorophore pH 8.1 pH 7.8 

0.1M Tris 200 MUF 1621.44 (±3.43) 1373.33 (±2.49) 

  MCA 14948.90 (±2.52) 13626.54 (±2.52) 

 612 

 613 

Figure 1. Cell-specific extracellular enzyme activity (mean ± SE, n=3) in response to seawater 614 

acidified with 0.1 M HCl (A), bubbled with CO2-Air gas mixture (B) and CO2-Air gas mixture 615 

introduced through gas-permeable silicon tubing (P). (a) BG activity in trial 1, (b) BG activity 616 

in trial 2, (c) LAP activity in trial 1, (d) LAP activity in trial 2. 617 

 618 

 619 

 620 
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 621 

Figure 2. Bacterial cell numbers (mean ± SE, n=3) in response to seawater acidified with 0.1 622 

M HCl (A), bubbled with CO2-Air gas mixture (B) and CO2-Air gas mixture introduced 623 

through gas-permeable silicon tubing (P). (a) trial 1, (b) trial 2. 624 

 625 

Figure 3. Cell-specific bacterial secondary production (mean ± SE, n=3) in response to 626 

seawater acidified with 0.1 M HCl (A), bubbled with CO2-Air gas mixture (B) and CO2-Air 627 

gas mixture introduced through gas-permeable silicon tubing (P). (a) trial 1, (b) trial 2. 628 
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